
Age at diagnosis is often an important predictor in survival 
modelling. Figure 3 plots output from a RPHRM where it is 
allowed maximum flexibility (and justified via p values): 

 within a time period, increments in diagnosed age can have 
different effects (natural cubic spline variables created from 
diagnosed age) 

 across time periods these “within effects” are allowed to 
differ (each natural cubic spline variable created above is 
itself transformed into  spline variables across log time) 

The above is an example where orthogonalization of the 
splines is necessary for the analysis to converge (justifying the 
use of Stata’s stpm2 command). 

 
Figure 3 Non-linear Effect of Diagnosed Age Within and 
Across Time Periods: Survival Estimates Plotted Above 28 Day 
Cycle Transition Probabilities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parametric “flexible” survival models should be in every HE 
modeller’s toolkit. Within cohort models it is relatively 
straightforward to program the transition probabilities into a 
“3D” matrix as described by Hawkins et al (5). For DES 
modelling, RPHRM has a form that allows event times to be 
generated quickly using Newton-Raphson techniques. It is also 
amenable to modelling transitions to more than one state 
(competing risk): closed form hazard allowing quick numerical 
integration to generate the Cumulative Incidence Functions 
from which transition probabilities to rival events can be 
derived. 

There are many other “flexible” methods and none is clearly 
better. Visual techniques (e.g. Figure 1) combined with disease 
knowledge should supplement AIC/BIC/DIC in deciding 
between them (especially since the latter can an be dominated 
by events early on with little regard to the accuracy of later 
predictions). 

Finally modellers need to ensure their code is producing 
sensible results – graphs such as presented in Figures 2 and 3 
are helpful. 
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Objectives 

Many diseases (e.g. oncology) display changing hazard rates 
over time that conventional parametric methods cannot 
replicate accurately. Various flexible parametric methods exist 
with increased number of parameters to alleviate this problem 
(Generalised Gamma and Generalised F distributions being 
examples). Royston-Parmar (1) Hazard Rate Models (RPHRMs) 
differ in one crucial regard; all key survival statistics (survival 
probability, cumulative hazard and hazard rate) can be 
calculated in closed form. This makes them ideal for HE models 
where speed of calculation is essential. This poster provides 
the basic theory, discusses suitable programming code, 
contrasts results with other survival models and points readers 
to further sources. 
 

 

 

 

 

The easiest way to comprehend RPHRMs is to realise that the 
standard Weibull model with predictors can be expressed in  
linear form of its (natural) log cumulative hazard: 

     ln 𝐻 𝑡 = ln 𝜆 + 𝛾ln 𝑡 + 𝑥𝛽  

 where t is time; 𝜆 is the scale and 𝛾 the shape parameter. 

RPHRMs increase flexibility by replacing 𝛾ln 𝑡  with a natural 
cubic spline increasing the number of parameters and 
attaching them to functions of log time. The formula 
incorporating predictors with time varying effects is 

ln 𝐻 𝑡 = ln 𝜆 + 𝑠 ln 𝑡 |𝛾0, k0 + 𝑠 ln 𝑡 |𝛾𝑗 , k𝑗 𝑥𝑗 +

𝐷

𝑗=1

𝑥𝛽 

 where 𝛾𝑗 and k𝑗 ( j = 0 … D ) are vectors of parameters and 

  knots (each 𝛾𝑗  excludes a ‘constant’ in definition above); 

 D is the number of predictors with time varying effects. 

The publicly available “ew_breast_ch7.dta” Stata dataset 
(http://www.stata-press.com/data/fpsaus.html) is used in the 
analysis, allowing users to replicate results in the excellent 
textbook associated with this web-link (2). Model parameters 
were estimated using the Stata ado package stpm2. 
Parameters (including covariance matrix) together with knot 
locations were exported to a csv file via automated routines. 
This file was imported into R where various user defined 
functions could be applied. All functions have been validated 
against results obtained by post-estimation Stata stpm2 
commands or against those within the R package flexsurv (3). 
To view some easily accessible programming code, load 
package flexsurv in R and type “flexsurv:::basis”.  The output 
shows a function for generating the cubic spline basis. 

The dataset has post breast cancer diagnosis data on  9,721 
patients. Two extremes on a deprivation index (least and most 
deprived) serve as proxy treatment variables.  

Bayesian programming of RPHRM is possible in JAGS or 
Winbugs (although convergence can be an issue). 

 

 

The kernel density curves on Figure 1 (dashed lines) clearly 
demonstrate non-monotonic hazard rates: for both deprived 
types a high initial hazard following diagnosis (first couple of 
days) quickly falls, then slowly rises to a peak at two years then 
falls steadily again. These sorts of shifts in risks are easy to miss 
when examining survival curves. Clearly parametric models 
that can only model monotonic hazards (those that either fall 
or rise but never do both – e.g. Weibull or Gompertz) will not 
be able to follow the hazard trajectory. Hence only non-
monotonic distributions are shown. Deprivation status has 
been used to model all ancillary parameters (along with 
location) attached to each specific distribution – allowing 
maximum hazard curve flexibility. 

The two Royston Parmar models are alone in capturing the 
early fall then rise in the kernel hazard. Of the two, the non 
proportional HR version (that allows the effects of deprivation 
to vary over time) is clearly better: in fact it is the only model 
that  incorporates the kernels along and within its 95% 
confidence limits.  

Clearly the huge confidence intervals attached to the 
Generalised F distribution ensure that any probabilistic 
sensitivity analysis will lead to very imprecise results. 

 

 

  

Figure 1 Hazard Rates: Parametric  Models (Prediction + 95% 
CI's) Plotted Against Kernel Density Estimate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
 
 

 
 
Figure 2 provides useful analysis, stability and validation plots: 

 Plot A demonstrates the necessity of relaxing the assumption 
of proportional hazards (confirmed also by test (4) based on 
Schoenfeld residuals with p value < 0.001). This is often 
provided as the justification for switching to Log-logistic or 
Log-Normal parametric forms – from observing their plots in 
Figure 1 this would clearly be a mistake.  

 Plot B shows 100 bootstrapped non-proportional hazard 
ratios for the Royston-Parmar model - the separate 
bootstrap predictions are shown close together suggesting 
that the analysis is not sensitive to small shifts in data. 

 Plot C shows 100 and 10,000 (inset) survival trajectory 
simulations from Monte Carlo sampling of the Royston-
Parmar model against the Kaplan-Meier “real” estimate.  

 Plot D (directly below C) shows what these simulation draws 
imply for HE cohort cycle transition probabilities – to be used 
for probabilistic sensitivity analysis (13 cycles = 1 Year). 
Within a cohort model the chosen cycle lengths should 
accommodate features found in the survival analysis - here a 
standard 28 day cycle model splits cycle one into  2 and 26 
days, recognising the initial high hazards observed in Figure1.  

  
Nothing looks amiss in Figure 2, increasing confidence in the 
model selection and code programming. 
 
Figure 2:  Useful Validation and H.E. Model Stability Plots for 
Royston-Parmar Non-Proportional Hazards Model 
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(A) Non-Proportional Hazards Justified: 

      Lines clearly not parallel 

(C) 100 Monte Carlo Survival PSA Paths (inset 10,000): 

       Individual trajectories sensible and range credible 

(D) Implied Cohort Transition Probabilities From PSA  

      Survival Trajectories Above: Results reassuring 

(B) Results Not Sensitive to Data Shifts 

      (100 Bootstrap Predictions Stable) 

10,000 Sims 

10,000 Sims 

Results (continued) 
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