
Realistic censoring was incorporated into the RCT by implementing a constant risk 

drop-out across time (exponential distribution) and a fixed study time end point 

of 18 months (all events simulated above this value were set to it and censored).

The RCT patient simulated times were then analysed using various CSHMs. Seven 

different distributions were applied to each of the two competing risks: Weibull, 

Loglogistic, Lognormal,  Gompertz, Gamma, Generalised Gamma and Generalised 

F. Within each distribution, two versions were tried - one that put treatment 

effect only on the scale/location parameter (along with others) and one that also 

put it on all remaining parameters.  Various plots and diagnostics were run to 

indicate the best fitting model, as detailed in the results section. Finally patient 

simulations were made from the best fitting models and timed for efficiency.

The actual “true” population  parameter (Beta) values that generated the  

artificial RCT are shown in the left hand columns in each plot in Figure 2) for the 

respective competing events.  Validation of this Monte Carlo generation process 

is supplied in these figures – applying the appropriate CSHM to this simulated 

data produced the parameter values shown in the sample survival regression 

results: the two sets are very close with all population values falling within the 

sample 95% confidence intervals.

Figure 2 Population Parameters that Generated the Clinical Trial Data Shown 

Against Sample Survival Regression Estimates Applied to this Generated Data

A log cumulative hazard plot against log time, which should be linear for Weibull 

models, is shown in figure 3A for transition Stable to Progression within males of 

five years of the mean age.  It shows the true underlying population relationship 

for active versus control as dashed lines (both shifted 0.5 up). Both lines are linear 

but not parallel (indicating Weibull non-proportional hazards). The solid lines 

represent sample estimates produced from transformations to the appropriate 

Kaplan-Meier survival curves. These suggest linearity (confirming Weibull model) 

but fail to convey enough information to judge the proportional hazards 

assumption. This is done in Figure 3B plotting Schoenfeld residuals (in orange) for 

treatment effect and showing the best fitting linear line against time – it clearly 

has a non-zero slope thus rejecting proportional hazards for the treatment effect.

Figure 3 Checking for (A) Weibull Functional Form (Linearity) and (B) 

Proportional Hazards Assumption For Treatment Effect via Schoenfeld Residuals 

Other diagnostic plots which were implemented for both competing events 

analysis included percentile-percentile plots between treatment groups 

(assessing accelerated failure time assumption), plots of logit(Kaplan-Meier 

survival) against log(time) to test log-logistic proportional odds assumption, Brier 

score predictive accuracy plots, model predicted hazard rates versus kernel 

density estimates plots and various residual (Standardised, Cox-Snell, Martingale-

Deviance) plots. All these plus the Akaike information criterion (AIC) showed the 

Weibull and Log-logistic to be the most appropriate in matching the relevant 

population generated distributions. Results were very close however compared to 

the Generalised Gamma and Generalised F distributions. The latter subsumes 

both Weibull and Log-logistic distributions and hence this result is unsurprising. 

The AIC results are shown below. 

Figure 4 Akaike Information Criterion Scores for Various Competing Risk Survival 

Models: Parameters Affected by Treatment Allowed to Vary

Competing risks (CRs) are endemic in health economic models (HEMs). 

Techniques for estimation, using cause specific hazard models (CSHMs) are well 

understood. However, many teaching aids use the same parametric family to 

model each separate risk. This should never be assumed, particularly when the 

competing events are disparate such as progression, remission or side effect 

induced treatment switching.  Visualisation and diagnostic/fit tools can be crucial 

in choosing between parametric forms. 

Combining different parametric families together to make predictions requires 

flexible analytics and programming. This poster seeks to provide useful 

background information for the less technically inclined reader and more specific 

advice to HE analysts/programmers engaged in competing risk analysis. 

Hypothetical results of a randomised clinical trial, RCT, were generated for 4000 

patients using Monte Carlo sampling techniques. All patients started in the Stable 

state and from it could remain there or move to either Progression or Adverse 

Events states or drop out (censored). Progression and Adverse Events are the  

competing events.  Baseline patient characteristics that were programmed to 

affect transition probabilities were treatment (control or active), sex and age.

The “true” population CSHM for moving from state Stable to Progression was 

generated from a Weibull distribution with the scale parameter linked to all three 

patient characteristics , whilst the shape parameter  was influenced by treatment 

alone. For moving from Stable  to Adverse Events, the “true” population CSHM 

was generated from a Log-logistic model where only the scale parameter was 

influenced by the explanatory variables treatment and sex. The only difference 

between a “standard” parametric survival model and one that is “cause specific” 

is that in the “cause specific” when a competing event occurs it is treated as 

censored at time of occurrence.

The principles for sampling a “failure” time and which event occurs at failure are 

straightforward. The survival probability for remaining in the initial state at any 

time point is simply calculated as the multiplication of all the relevant individual 

cause-specific survival probabilities that arise from it. Once such a “combined 

survival” curve has been assembled for many consecutive time points a failure 

time can be generated using the popular general inverse-transform method: 

Simply sample a number between 0 and 1 from the uniform distribution and find 

the time point that produces a survival probability that is very close to it. 

To estimate which competing event occurs at this failure time point, sample from 

the multinomial distribution (or the binomial if there only two competing events). 

The probabilities to enter into this multinomial/binomial distribution for each 

competing event are based on the relative  size of their calculated hazard rates at 

the failure time.

Unfortunately, the application of all the above is often far from simple. Usually 

there is no analytical (closed form) solution to finding a time point from the 

combined survival curve for any inputted survival probability However, such a 

solution can be found using iterative methods that search for solutions within a 

small tolerance. The most widely known is Newton-Raphson (NR) and a visual 

demonstration of the process working successfully is shown in Figure 1A

Within Figure 1A, the uniform random number between 0 and 1 that is drawn is 

represented by U* and equals 0.4. This value is subtracted from the survival curve 

– moving it down to the dashed curve. What the NR method does is to find the 

root (where it crossed the time axis) of this shifted curve (which by inspecting the 

graph is the solution to the problem). It finds this point by starting at time point t0 

(inputted by the user – any reasonable value). It moves to the shifted curve value 

at this time point and calculates its tangent line – in particular it calculates where 

this tangent line cuts the time axis (time point t1). It then simply repeats this 

process and from the movements shown clearly converges to the correct result.

However the process can break down as shown in Figure 1B. Here the initial 

tangent line is very shallow implying a negative time point crossing the time axis. 

Clearly this is infeasible. A potential solution and one that sometimes works is to 

stipulate a small positive time point that is chosen for the next round (tsmall ) when 

this occurs. However if that too has a shallow gradient then it generates a huge 

next round time point and an endless cycle is formed.  This problem is caused by 

the reverse sigmoidal (S) shape corresponding to many survival curves.

One possible solution is to employ a one-to-one transformation to this survival 

curve that straightens out much of the curvature. Then simply apply the same 

transformation to the drawn uniform random number and follow the procedures 

just outlined. An obvious candidate is the Cumulative Hazard, H(t), curve which is 

defined as H(t)  = –log( S(t) ). In fact for many distributions H(t) has a less complex 

definition than S(t) and similarly for the definition of its derivative (the tangent 

slope = hazard rate) saving computing time.

When the NR method breaks down, an algorithm that can guarantee convergence 

is Brent’s method which combines root bracketing, bisection, and inverse 

quadratic interpolation techniques. Its drawback is that it is relatively slow.
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Figure 1 Demonstration of Successful (A) and Unsuccessful (B) Convergence of 
Newton – Raphson Method For Generating a Random Survival Time

In terms of simulating the competing risks from the best fitting CSHMs (utilising 

models’ parameter and covariance matrices for PSA purposes) convergence was 

an issue for the NR method employing the combined survival probability curve. It 

converged for most but not all PSA parameter draws × patient profiles. 

Figure 5 shows the combined survival and cumulative hazard curves for such a 

profile where convergence failed: the specific patient profile and PSA draw 

resulted in distributions of Weibull(shape=1.36, scale=0.05) and Log-

logistic(shape=1.27,scale=20.9). The heavy curvature (reverse sigmoidal) in the 

survival curve prevented convergence (attempted to match a random uniform 

draw of 0.79); such a problem did not exist with the cumulative hazard curve 

which is clearly closer to being linear (and no inflection point).

Figure 5 Patient Profile Combined Survival Curve (A) and Associated Cumulative 
Hazard Function (B) Where Simulation Fails Using (A) But Succeeds With (B)

The time taken to achieve convergence for any given simulation varied greatly 

between routines.  By far the most efficient was a method that used vectorised 

commands to generate all PSA and patient draws at the same time. This would 

only be possible if the competing risks occurred at the start of the modelling 

process.  It took just 97 seconds within R to generate 10,000 PSA draws with 1000 

patients within each (their survival time in State Stable computed together with 

which competing event was moved to). The technique adopted the NR method 

using cumulative hazards. Applying the same technique but using a more 

traditional  “nested for loop” approach where results are simulated one at time 

took over 32 minutes (20 times slower).  Switching to Brent’s method and 

simulating one at a time took 50 minutes (31 times slower) on an i7-4790 intel 

processor using one core (R3.3.1 on Windows).

Using benchmarking and profiling tools were crucial in reducing simulation times 

– it is not always obvious which commands are the fastest and it can vary 

dependent on context. For example there was a huge boost (12 times faster) 

when simulating results one at a time (“for loops”) from switching from equation 

(1) to (2) for calculating the Cumulative hazard at the current step time value t:

H = HweibullPH(t, Weib.shape , Weib.scale) + Hllogis(t, Loglog.shape,Loglog.scale)       (1)

H = Weib.scale × t^Weib.shape - log(1/(1 + (t/Loglog.scale)^Loglog.shape))                   (2)

Equation 1 uses commands from the excellent flexsurv package. These commands 

run numerous user entered error checks (commendable for a public available 

package) which are not too time costly within R’s vectorised operations for which 

they were designed.  However, within R’s “for loops” they are extremely  

inefficient (R has poor memory management compared to other languages).

Models should always be made to fit the data – it should never be the other way 

round. Simulating competing risk data (transition times and competing event 

moved to) with competing events being drawn from different distribution 

functions is in principle no harder than drawing them all from the same 

distribution. Therefore it is imperative, researchers do not choose the distribution 

that appears best fitting on the “most important competing event” and impose 

this on all others. Such a misguided approach has possibly been boosted by 

textbooks and online materials that show how separate survival models (one for 

each competing risk within the same distribution) can actually be generated from 

just one survival software command – readers may mistakenly believe this is 

always the correct way to proceed.

The NR procedure outlined in the text appears well suited to the sampling task. 

This appears particularly the case when utilising the cumulative hazard function: 

we have yet to find an example where the method has not achieved convergence 

(2/3/4 competing risks attempted across numerous different distribution 

permutations). Utilising the Survival distribution as an alternative appears more 

prone to convergence problems  - owing to its potential reverse sigmoidal shape. 

However for distributions such as the Generalised F, it may be more efficient (less 

complex equation in terms of the survival function and its derivative), and thus 

both alternatives should be attempted and compared for efficiency.

If the NR fails to converge then Brent’s method can be applied (it will converge 

based on the fact that survival or cumulative hazard curves are monotonic). 

However this method is slower in achieving convergence as demonstrated in the 

presented benchmarking results. This is significant on realisation that the 50 

minutes recorded only relates to one aspect of the DES model.

The R programming language has been used here as it is free and familiar to 

many. It also allows complete freedom to incorporate any statistical feature and is 

totally transparent – unlike standalone commercial DES modelling packages. 

Validation of code is often easier to achieve as well:  Tasks can down into small 

functions and separately validated (often against academic released public R 

packages such as flexsurv). If run-times in R are too slow, programmers are 

encouraged to incorporate C/C++ code within R using the excellent Rcpp package 

or alternatively switch completely to “Julia” (author’s preferred choice).

Finally it has to be stated that “cause specific” are not the only way to estimate 

competing risk models – “sub-distribution hazard” models pursue a different 

approach and possess certain desirable properties. However the advantage of 

cause specific is that any existing survival command in software packages such as 

SAS, Stata or R can be used without modification (simply treating competing 

events as censored), whilst “sub-distribution” require specialist programming.
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